Gas exchange in the filamentous cyanobacterium Nostoc punctiforme strain ATCC 29133 and Its hydrogenase-deficient mutant strain NHM5.

نویسندگان

  • Pia Lindberg
  • Peter Lindblad
  • Laurent Cournac
چکیده

Nostoc punctiforme ATCC 29133 is a nitrogen-fixing, heterocystous cyanobacterium of symbiotic origin. During nitrogen fixation, it produces molecular hydrogen (H(2)), which is recaptured by an uptake hydrogenase. Gas exchange in cultures of N. punctiforme ATCC 29133 and its hydrogenase-free mutant strain NHM5 was studied. Exchange of O(2), CO(2), N(2), and H(2) was followed simultaneously with a mass spectrometer in cultures grown under nitrogen-fixing conditions. Isotopic tracing was used to separate evolution and uptake of CO(2) and O(2). The amount of H(2) produced per molecule of N(2) fixed was found to vary with light conditions, high light giving a greater increase in H(2) production than N(2) fixation. The ratio under low light and high light was approximately 1.4 and 6.1 molecules of H(2) produced per molecule of N(2) fixed, respectively. Incubation under high light for a longer time, until the culture was depleted of CO(2), caused a decrease in the nitrogen fixation rate. At the same time, hydrogen production in the hydrogenase-deficient strain was increased from an initial rate of approximately 6 micro mol (mg of chlorophyll a)(-1) h(-1) to 9 micro mol (mg of chlorophyll a)(-1) h(-1) after about 50 min. A light-stimulated hydrogen-deuterium exchange activity stemming from the nitrogenase was observed in the two strains. The present findings are important for understanding this nitrogenase-based system, aiming at photobiological hydrogen production, as we have identified the conditions under which the energy flow through the nitrogenase can be directed towards hydrogen production rather than nitrogen fixation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the nitrate-nitrite transporter of the major facilitator superfamily (the nrtP gene product) from the cyanobacterium Nostoc punctiforme strain ATCC 29133.

The products of the NpR1527 and NpR1526 genes of the filamentous, diazotrophic, fresh-water cyanobacterium Nostoc punctiforme strain ATCC 29133 were identified as a nitrate transporter (NRT) and nitrate reductase (NR) respectively, by complementation of nitrate assimilation mutants of the cyanobacterium Synechococcus elongatus strain PCC 7942. While other fresh-water cyanobacteria, including S....

متن کامل

The response regulator Npun_F1278 is essential for scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133.

Following exposure to long-wavelength ultraviolet radiation (UVA), some cyanobacteria produce the indole-alkaloid sunscreen scytonemin. The genomic region associated with scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme includes 18 cotranscribed genes. A two-component regulatory system (Npun_F1277/Npun_F1278) directly upstream from the biosynthetic genes was identified through c...

متن کامل

A hormogonium regulating locus, hrmUA, of the cyanobacterium Nostoc punctiforme strain ATCC 29133 and its response to an extract of a symbiotic plant partner Anthoceros punctatus.

Transposon-generated mutant strain UCD 328 of Nostoc punctiforme strain ATCC 29133 has a phenotype of an increased sensitivity to a hormogonium-inducing factor exuded by a symbiotic plant partner, Anthoceros punctatus, and an initial increased hormogonium-dependent infection of the plant. Sequence analysis showed that the transposition site in strain UCD 328 lies within a 1,251-bp open reading ...

متن کامل

Hydrogenases and hydrogen metabolism of cyanobacteria.

Cyanobacteria may possess several enzymes that are directly involved in dihydrogen metabolism: nitrogenase(s) catalyzing the production of hydrogen concomitantly with the reduction of dinitrogen to ammonia, an uptake hydrogenase (encoded by hupSL) catalyzing the consumption of hydrogen produced by the nitrogenase, and a bidirectional hydrogenase (encoded by hoxFUYH) which has the capacity to bo...

متن کامل

The hetF gene product is essential to heterocyst differentiation and affects HetR function in the cyanobacterium Nostoc punctiforme.

A novel gene, hetF, was identified as essential for heterocyst development in the filamentous cyanobacterium Nostoc punctiforme strain ATCC 29133. In the absence of combined nitrogen, hetF mutants were unable to differentiate heterocysts, whereas extra copies of hetF in trans induced the formation of clusters of heterocysts. Sequences hybridizing to a hetF probe were detected only in heterocyst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 70 4  شماره 

صفحات  -

تاریخ انتشار 2004